Search

Stay Connected

NOAA Research News

Scientists recommend a system of checkpoints to help guide climate engineering research
Theo Stein
/ Categories: Research Headlines, Climate

Scientists recommend a system of checkpoints to help guide climate engineering research

Research into engineering techniques that might one day be employed to artificially cool the planet poses some of the thorniest questions facing society today. For climate scientists, that tension is compounded by the lack of a broadly accepted oversight framework to guide their research. 

Image
This graphic illustrates the six physical science checkpoints proposed by a team of climate researchers as part of a governance framework to guide investigations of marine cloud brightening, a climate intervention technique. In this conceptualization, research proceeds simultaneously on all six checkpoints and on social science and ethics checkpoints, subject to continual reassessment as research progresses. Credit: Michael Diamond and Chelsea Thompson, CIRES/NOAA.

In an opinion article published in the Proceedings of the National Academy of Sciences, a team of scientists led by NOAA and CIRES researchers outline a framework for assessing the viability of a method for reflecting sunlight called marine cloud brightening, or MCB. The proposed method would use ocean sea-salt particles to increase the reflectivity of low-lying clouds over certain ocean regions. This is one of a number of proposed methods under consideration as a temporary measure to limit rampant warming.

First, decarbonize...

Climate scientists agree that the most important steps that can be taken to avoid the worst impacts of climate change are to decarbonize the economy, and preserve and restore natural ecosystems that absorb carbon, said lead author Michael Diamond, a CIRES scientist working at NOAA. 

Image
Recent research has shown that "shiptracks," linear clouds formed from particles emitted by marine traffic, which may be a good analog for a geoengineering technique known as marine cloud brightening. In a new paper, scientists from NOAA, CIRES, NASA and other institutions propose a set of rules to govern how to conduct research into marine cloud brightening - and when to stop. Credit: NASA

Unfortunately, current pledges to cut global greenhouse gas emissions are insufficient to limit warming to 1.5 degrees C (or 2.7 degrees F). As global climate impacts grow in severity, the interest in climate intervention research is expected to increase. A 2021 report issued by the National Academies of Science, Engineering and Medicine recommended conducting research in climate intervention methods and, further, said such research should operate under “robust research governance” to objectively assess its value and risks - governance that does not yet exist.

...but start needed research now

“MCB is now being evaluated as a potentially viable option, and therefore it is incumbent on us to coordinate across the many contributing institutions and create the structure for a future research program,” said NOAA scientist Graham Feingold.

Led by Diamond and Feingold, a team that includes researchers from NCAR, NASA’s Jet Propulsion Laboratory, the Brookhaven National Laboratory, Scripps Institution of Oceanography, and the University of Washington, lays out ideas for such a framework. They propose a list of six “checkpoints” that should be continuously assessed during research into marine cloud brightening.

If at any point, a research effort demonstrates that a single aspect of MCB would be technically infeasible or socially unacceptable, the project would be shunted onto an “exit ramp” leading to redirection or termination of the work. 

Six checkpoints, explained

Among the physical science checkpoints the scientists identified, researchers would need to develop sufficient confidence that appropriately-sized particles can be generated and delivered to the right altitude and once there, act to form cloud droplets that scatter sunlight efficiently. They would also need to show that MCB activities would not trigger cloud responses that substantially offset the brightening effect.

Scientists would further need to establish that marine clouds that can be brightened occur frequently enough to reduce the global impact of climate change and show that the cooling effect of MCB would be measurable in order to demonstrate that the method is working as intended.

Finally, MCB research would need to clarify the risks of negative impacts on coastal communities and ecosystems and large-scale disruption of atmospheric circulations with unintended consequences, such as affecting precipitation patterns in vulnerable regions like the Amazon. 

No science in a silo

Beyond addressing science gaps, an equitable governance structure would incorporate input from experts in fields outside the physical sciences, such as ethics, sociology and ecology in decisions about research feasibility and funding. For example, if researchers reached a point where there was scientific confidence in the predictability of MCB-influenced precipitation changes, a decision about whether research continues would consider how ecological and societal impacts affect different communities or regions.

 "Policymakers and potentially affected communities need a seat at the table to ensure that the information scientists generate is usable and relevant to their needs," said Diamond. Although their paper focuses on MCB, the scientists advocate for a similar research framework to assess the viability of other climate intervention proposals, such as stratospheric aerosol injection, which would cool the planet by spreading millions of tons of light-reflecting particles in the stratosphere, where Earth’s protective ozone layer is found.

“While in an ideal world, the global community would quickly develop formal governance structures to oversee research and direct funding, the research community needs to establish guidelines for itself now,” said Diamond.

The research was supported by NOAA’s Earth’s Radiation Budget initiative, CIRES, the National Science Foundation, NASA,  and the Department of Energy.

For more information, contact Theo Stein, at NOAA Communications: theo.stein@noaa.gov.

Previous Article Ocean Exploration education grants to advance diversity, equity, and inclusion announced
Next Article Understanding a unique tsunami event caused by the Tonga volcano eruption
Print
3269

x

Popular Research News

Study: Reducing human-caused air pollution in North America & Europe brings surprise result: more hurricanes

Study: Reducing human-caused air pollution in North America & Europe brings surprise result: more hurricanes Read more

A new NOAA study published today in the journal Science Advances about four decades of tropical cyclones reveals the surprising result that reducing particulate air pollution in Europe and North America has contributed to an increase in the number of tropical cyclones in the North Atlantic basin and a decrease in the number of these storms in the Southern Hemisphere. The study also found that the growth of particulate pollution in Asia has contributed to fewer tropical cyclones in the western North Pacific basin. 

Greenhouse gas pollution trapped 49% more heat in 2021 than in 1990, NOAA finds

Greenhouse gas pollution trapped 49% more heat in 2021 than in 1990, NOAA finds Read more

The Annual Greenhouse Gas Index serves as a measure of global society's progress - or lack of progress - in reducing greenhouse gas emissions.

Projected increase in space travel may damage ozone layer

Projected increase in space travel may damage ozone layer Read more

Scientists from NOAA and The Aerospace Corp. modeled the climate response of the stratosphere to increased future emissions of black carbon from rockets burning kerosene fuel.

NOAA’s observations help EPA track emissions of a family of greenhouse gases

NOAA’s observations help EPA track emissions of a family of greenhouse gases Read more

NOAA atmospheric measurements are helping to support a national inventory of emissions from an important family of greenhouse gases.

NOAA wind forecasts result in $150 million in energy savings every year

NOAA wind forecasts result in $150 million in energy savings every year Read more

Accurate, high resolution weather forecasts equate to cost savings across many different industries, but it is not always clear exactly what those cost savings are.

RSS
«July 2022»
SunMonTueWedThuFriSat
262728293012
3456789
10111213141516
17181920212223
24252627282930
31123456

OAR HEADQUARTERS

Phone: 301-713-2458
Address: 1315 East-West Highway Silver Spring, MD 20910

Stay Connected

ABOUT US

Oceanic and Atmospheric Research (OAR) - or "NOAA Research" - provides the research foundation for understanding the complex systems that support our planet. Working in partnership with other organizational units of the NOAA, a bureau of the Department of Commerce, NOAA Research enables better forecasts, earlier warnings for natural disasters, and a greater understanding of the Earth. Our role is to provide unbiased science to better manage the environment, nationally, and globally.

CONTACT US

Can't Find What You Need?
Send Feedback
Copyright 2018 by NOAA Terms Of Use Privacy Statement
Back To Top