Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Home » wind

wind

Measuring the impact of additional instrumentation on the skill of numerical weather prediction models at forecasting wind ramp events during the first Wind Forecast Improvement Project (WFIP)

 
Grid operators responsible for making decisions on what kind of power generation to use to keep the grid in balance (conventional versus weather dependent, such as wind or solar) need a reliable numerical weather prediction (NWP) model to ensure grid stability. A statistically significant improvement of the ramp event forecast skill is found through the assimilation of the special WFIP data in two different study areas, and variations in model skill between up‐ramp versus down‐ramp events are found.

Measuring the impact of additional instrumentation on the skill of numerical weather prediction models at forecasting wind ramp events during the first Wind Forecast Improvement Project (WFIP) Read More >

Bulletin of the AMS: Improving Wind Energy Forecasting through Numerical Weather Prediction Model Development

Researchers leveraged a multi-scale dataset of observations from the second Wind Forecast Improvement Project field campaign in the northwest U.S. to diagnose and quantify systematic forecast errors in the operational High-Resolution Rapid Refresh (HRRR) model during weather events of particular concern to wind energy forecasting. Examples of such events are cold pools, gap flows, thermal troughs/marine pushes, mountain waves, and topographic wakes. This study describes the model development and testing undertaken during WFIP2, and demonstrates forecast improvements. Specifically, WFIP2 found that mean absolute errors in rotor-layer wind speed forecasts could be reduced by 5-20% in winter by improving the turbulent mixing lengths, horizontal diffusion, and gravity wave drag. The model improvements made in WFIP2 are also shown to be applicable to regions outside of complex terrain. Ongoing and future challenges in model development will also be discussed.

Bulletin of the AMS: Improving Wind Energy Forecasting through Numerical Weather Prediction Model Development Read More >

Scroll to Top

Popup Call to Action

A prompt with more information on your call to action.