More frequent and intense rainfall events due to climate change could cause more landslides in the High Mountain Asia region of China, Tibet and Nepal, according to the first quantitative study of the link between precipitation and landslides in the region.
Air & Sea Chronicles is NOAA's blog series documenting the ATOMIC mission in Barbados. This is the third post from Janet Intrieri, a research scientist from NOAA's Earth System Research Lab Physical Sciences Division, who gives us a recap of a week releasing weather balloons on the NOAA Ship Ronald H. Brown.
American and European scientists are deploying dozens of autonomous and remotely-piloted instrument platforms to capture simultaneous observations of the lower atmosphere and the upper ocean offshore of Barbados with unprecedented detail.
Picture a calm, sunny day at a tropical beach. You look out at the ocean and in the distance a flotilla of small white clouds sails close to the waves. It’s ideal weather and typical of many days in the tropical Atlantic. However, scientists don’t fully understand how these ubiquitous clouds (a type of “shallow convective cloud”) form and impact the ocean, and it represents one of the largest uncertainties in predicting climate change.
Sometimes to understand the present, it takes looking to the past. That’s the approach coastal researchers, supported by the NOAA Climate Program Office Climate Observations and Monitoring (COM) Program, are taking to pinpoint the causes of extreme sea level changes.
New research by NOAA and a visiting scientist from India shows that warming of the Indo-Pacific Ocean is altering rainfall patterns from the tropics to the United States, contributing to declines in rainfall on the United States west and east coasts.
Our planet has been baking under the sun this summer as temperatures reached the hottest ever recorded and heat waves spread across the globe. While the climate continues to warm, scientists expect the frequency and intensity of heat waves to increase. However, a commonly overlooked aspect is the spatial size of heat waves, despite its important implications.