Stay Connected

NOAA Research News

Fifty years ago, a historic balloon launch that changed the way we see the ozone layer
SuperUser Account
/ Categories: Climate, 2017

Fifty years ago, a historic balloon launch that changed the way we see the ozone layer

MARSHALL MESA, CO - From atop this grassy mesa in 1967, scientists with the federal Environmental Science Services Agency carefully launched a weather balloon carrying a new instrument that could measure ozone levels from the ground to the very edge of outer space -- and radio the data back to a ground receiver.

What started out as a modest research project driven by scientific curiosity provided the agency that would later become NOAA with some of the first insights into how ozone,  a trace gas that blocks the sun’s harmful ultraviolet rays from penetrating through the stratosphere, was distributed in the atmosphere. The instrument -- an early version of today’s ozonesonde -- helped NOAA develop knowledge and expertise that became vitally important when the Antarctic ozone hole was discovered 15 years later.

Ozone research was scientist Sam Oltmans’ first assignment when he started with ESSA in Boulder in 1969.

“At the time, we had very limited measurements of ozone in the atmosphere,” said Oltmans, a retired NOAA Global Monitoring Division scientist who continues to work with the agency. “We were just trying to get a basic understanding of what stratospheric ozone was like.  No one had the foggiest idea about stratospheric ozone depletion.

Clues to the cause of the Antarctic ozone hole

When the discovery of the Antarctic ozone hole galvanized the international scientific community in the 1980s, ozonesonde measurements taken by NOAA in Boulder and at the South Pole were essential for scientists to make sense of observations from satellites, which could gather ozone readings from across large areas.

The first instrument to measure ozone – the Dobson spectrophotometer – was a ground-based device that measures the total amount of ozone in a column of the atmosphere above it, but not how it is distributed.  Like the Dobson spectrophotometer, early satellites could not resolve the distribution of ozone in the atmosphere. But the ozonesonde does.

An ozonesonde takes continuous readings from the ground to as high as the balloon can float before it pops - at about 130,000 feet altitude – producing a high-resolution, vertical record of ozone readings. This level of detail - and NOAA’s lengthy South Pole ozone data record - was critical for identifying the lower stratosphere as the region where chlorine atoms from chlorofluorocarbons, low temperatures and sunlight combined to destroy the ozone layer.

“Without balloon measurements, diagnosing the cause of the Antarctic ozone hole would have been extremely difficult, if not impossible,” said Chemical Sciences Division Director David Fahey, who co-chairs the scientific assessment panel for the Montreal Protocol on Substances that Deplete the Ozone Layer.

Today, scientists still use ozonesondes to validate and correct satellite data.

Ozonesondes are also widely used to study ground-level ozone pollution, which forms when sunlight bakes emissions from industrial and transportation sources. 

NOAA's ozonesonde now the world's workhorse

NOAA’s Walter Komhyr, who built the first prototypes used in the initial research project, later patented a design that pumps air into a small sensor that measures ozone levels via an electrochemical reaction. Over time, the ECC ozonesonde became the standard instrument for investigating the protective stratospheric ozone layer as well as for measuring harmful ozone pollution close to the ground. Three different companies have been licensed to manufacture the ozonesonde. Close to  100,000 have been made so far.

The knowledge gained from the government’s early ozone studies and the lengthy data set that it produced is a good example of why fundamental scientific research is so important,” said  James Butler, director of NOAA’s Global Monitoring Division.

“High-quality, scientifically driven, long-term records from measurement systems like these allow us to identify and understand changes in the Earth system,” Butler said. “This is true whether you’re talking about ozone depletion, pollutant transport, or climate change.”  

A video on this research effort can be seen here:

For more information, contact Theo Stein, NOAA Communications, at (303) 497-6288 or


Previous Article Study: Global plant growth surging alongside carbon dioxide
Next Article Research finds spike in dust storms in American Southwest driven by ocean changes



Phone: 301-713-2458
Address: 1315 East-West Highway Silver Spring, MD 20910

Stay Connected


Oceanic and Atmospheric Research (OAR) - or "NOAA Research" - provides the research foundation for understanding the complex systems that support our planet. Working in partnership with other organizational units of the NOAA, a bureau of the Department of Commerce, NOAA Research enables better forecasts, earlier warnings for natural disasters, and a greater understanding of the Earth. Our role is to provide unbiased science to better manage the environment, nationally, and globally.


Can't Find What You Need?
Send Feedback
Copyright 2018 by NOAA Terms Of Use Privacy Statement
Back To Top