Search

Stay Connected

NOAA Research News

Despite pandemic shutdowns, carbon dioxide and methane surged in 2020
Theo Stein
/ Categories: Research Headlines, Climate

Despite pandemic shutdowns, carbon dioxide and methane surged in 2020

Carbon dioxide levels are now higher than at anytime in the past 3.6 million years

Levels of the two most important anthropogenic greenhouse gases, carbon dioxide and methane, continued their unrelenting rise in 2020 despite the economic slowdown caused by the coronavirus pandemic response, NOAA announced today.

Image
These graphs depict the mean global atmospheric burden of carbon dioxide as analyzed from measurements collected by NOAA's Global Greenhouse Gas Reference Network. Credit: NOAA Global Monitoring Laboratory.

The global surface average for carbon dioxide (CO2), calculated from measurements collected at NOAA’s remote sampling locations, was 412.5 parts per million (ppm) in 2020, rising by 2.6 ppm during the year. The global rate of increase was the fifth-highest in NOAA’s 63-year record, following 1987, 1998, 2015 and 2016. The annual mean at NOAA's Mauna Loa Observatory in Hawaii was 414.4 ppm during 2020. 

Economic slowdown prevented a record increase in CO2

The economic recession was estimated to have reduced carbon emissions by about 7 percent during 2020. Without the economic slowdown, the 2020 increase would have been the highest on record, according to Pieter Tans, senior scientist at NOAA’s Global Monitoring Laboratory. Since 2000, the global CO2 average has grown by 43.5 ppm, an increase of 12 percent.

The atmospheric burden of CO2 is now comparable to where it was during the Mid-Pliocene Warm Period around 3.6 million years ago, when concentrations of carbon dioxide ranged from about 380 to 450 parts per million. During that time sea level was about 78 feet higher than today, the average temperature was 7 degrees Fahrenheit higher than in pre-industrial times, and studies indicate large forests occupied areas of the Arctic that are now tundra. 

Image
Increases in the monthly average carbon dioxide measurements at NOAA's Mauna Loa Observatory are depicted in these graphs. Credit: NOAA Global Monitoring Laboratory.

“Human activity is driving climate change,” said Colm Sweeney, assistant deputy director of the Global Monitoring Lab. “If we want to mitigate the worst impacts, it’s going to take a deliberate focus on reducing fossil fuels emissions to near zero - and even then we’ll need to look for ways to further remove greenhouse gasses from the atmosphere.”

The Global Monitoring Laboratory makes highly accurate measurements of the three major greenhouse gases, carbon dioxide, methane, and nitrous oxide, from four baseline observatories in Hawaii, Alaska, American Samoa, and the South Pole, and from samples collected by volunteers at more than 50 other cooperative sampling sites around the world.  These measurements are incorporated into the Global Greenhouse Gas Reference Network and are a vital reference widely used by international climate researchers. 

Methane levels also surged

Analysis of samples from 2020 also showed a significant jump in the atmospheric burden of methane, which is far less abundant but 28 times more potent than CO2 at trapping heat over a 100-year time frame. NOAA’s preliminary analysis showed the annual increase in atmospheric methane for 2020 was 14.7 parts per billion (ppb), which is the largest annual increase recorded since systematic measurements began in 1983. The global average burden of methane for December 2020, the last month for which data has been analyzed, was 1892.3 ppb. That would represent an increase of about 119 ppb, or 6 percent, since 2000. 

Image
These graphs depict the increase in the monthly mean global atmospheric burden of methane as analyzed from measurements collected by NOAA's Global Greenhouse Gas Reference Network. Credit: NOAA Global Monitoring Laboratory.

In early April, GML typically releases a preliminary estimate of the global annual atmospheric increase for key greenhouse gases from January 1st in one year to January 1st in the next year. This preliminary estimate is based on measurements from weekly air samples collected at about 40 sites around the world. While GML's preliminary estimates are typically a little higher than the final calculation, which incorporates additional measurements, the 2020 increase is likely to remain one of the largest in the entire record.

Methane in the atmosphere is generated by many different sources, such as fossil fuel development and use, decay of organic matter in wetlands, and as a byproduct of livestock farming. Determining which specific sources are responsible for variations in methane annual increase is difficult. Preliminary analysis of  carbon isotopic composition of methane in the NOAA air samples done by the Institute of Arctic and Alpine Research at the University of Colorado, indicates that it is likely that a primary driver of the increased methane burden comes from biological sources of methane such as wetlands or livestock rather than thermogenic sources like oil and gas production and use. 

"Although increased fossil emissions may not be fully responsible for the recent growth in methane levels, reducing fossil methane emissions are an important step toward mitigating climate change," said GML research chemist Ed Dlugokencky.

For more information, contact Theo Stein, NOAA Communications, at theo.stein@noaa.gov. 

Previous Article New study shows promise of forecasting meteotsunamis
Next Article NOAA report highlights 2020 climate, weather, ocean research
Print
50399

x

Popular Research News

Despite pandemic shutdowns, carbon dioxide and methane surged in 2020

Despite pandemic shutdowns, carbon dioxide and methane surged in 2020 Read more

The global average carbon dioxide level in the atmosphere surged at the fifth-highest rate in NOAA's 63-year record during 2020. Preliminary estimates of the increase in methane levels indicate it may have been the largest annual jump on record.  

Climate-driven shifts in deep Lake Michigan water temperatures signal the loss of winter

Climate-driven shifts in deep Lake Michigan water temperatures signal the loss of winter Read more

Climate change is causing significant impacts on the Great Lakes and the surrounding region. As the largest surface freshwater system in the world, the Great Lakes have an enormous impact, seen and unseen, on the more than 34 million people who live within their collective basin. Because of their unique response to environmental conditions, Earth’s large lakes are considered by scientists as key sentinels of climate change. A long-term study published in Nature Communications today from NOAA reveals a warming trend in deepwater temperatures that foreshadows profound ecological change on the horizon. While less visible than the loss in ice cover and increasing lake surface temperatures, this latest index of climate change adds to the growing evidence of climate change impacts in the region. 

New study shows promise of forecasting meteotsunamis

New study shows promise of forecasting meteotsunamis Read more

On the afternoon of April 13, 2018, a large wave of water surged across Lake Michigan and flooded the shores of the picturesque beach town of Ludington, Michigan, damaging homes and boat docks, and flooding intake pipes. Thanks to a local citizen’s photos and other data, NOAA scientists reconstructed the event in models and determined this was the first ever documented meteotsunami in the Great Lakes caused by an atmospheric inertia-gravity wave.

5 ways NOAA scientists are answering big questions about climate change

5 ways NOAA scientists are answering big questions about climate change Read more

From warmer ocean temperatures to longer and more intense droughts and heat waves, climate change is affecting our entire planet. Scientists at NOAA have long worked to track, understand and predict how climate change is progressing and impacting ecosystems, communities and economies.

NOAA report highlights 2020 climate, weather, ocean research

NOAA report highlights 2020 climate, weather, ocean research Read more

Launching uncrewed systems to monitor climate and ecosystem changes in the U.S. Arctic, sequencing the genome for endangered marine species, and improving weather forecasts with advances in regional models — these are just a few of NOAA’s scientific achievements in 2020. The newly released 2020 NOAA Science Report highlights the ways these accomplishments — and many more — provide the foundation for vital services that Americans use every day. 

RSS
«May 2021»
SunMonTueWedThuFriSat
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345

OAR HEADQUARTERS

Phone: 301-713-2458
Address: 1315 East-West Highway Silver Spring, MD 20910

Stay Connected

ABOUT US

Oceanic and Atmospheric Research (OAR) - or "NOAA Research" - provides the research foundation for understanding the complex systems that support our planet. Working in partnership with other organizational units of the NOAA, a bureau of the Department of Commerce, NOAA Research enables better forecasts, earlier warnings for natural disasters, and a greater understanding of the Earth. Our role is to provide unbiased science to better manage the environment, nationally, and globally.

CONTACT US

Can't Find What You Need?
Send Feedback
Copyright 2018 by NOAA Terms Of Use Privacy Statement
Back To Top