The sudden and sustained risesine 2007 in atmospheric levels of the potent greenhouse gas methane has posed one of the most significant and pressing questions in climate research: Where is it coming from?
Scientists with NOAA's Global Monitoring Laboratory will evaluate the optimal placement of greenhouse-gas sampling inlets on a Boeing 737 flying testbed owned by Alaska Air during Boeing's 2021 ecoDemonstrator technology development program.
The annual analysis of samples collected by NOAA’s Global Greenhouse Gas Reference Network provides an updated measure of the excess heat trapped in the atmosphere by greenhouse gas pollution.
New analyses of global air measurements show that five years after an unexpected spike in emissions of the banned ozone-depleting chemical chlorofluorocarbon CFC-11, they dropped sharply between 2018 and 2019.
The giant methane cloud spotted by satellite over the U.S. Southwest that made national headlines in 2014 wasn’t a persistent, undiscovered “hotspot” as first thought, but the result of a nightly atmospheric condition and topography that trapped industrial and natural emissions of the potent greenhouse gas near the ground in the basin overnight, according to new research published in the journal Elementa by CIRES and NOAA.
Understanding the biologic contribution of CO2 to megacities' overall carbon emissions will be important for designing and evaluating mitigation strategies.
Running on the newest version of NOAA’s Global Forecast System, or GFS, the FV3-Chem model forecasts the distribution of some primary air pollutants: smoke, soot, organic carbon, sulfate, and large and small particles of dust and sea salt - collectively known as aerosols. Because these aerosols affect the weather, the model also provides weather forecasts.
Atmospheric carbon dioxide measured at Mauna Loa Observatory reached a seasonal peak of 417.1 parts per million for 2020 in May, the highest monthly reading ever recorded. Monthly CO2 values at Mauna Loa first breached the 400 ppm threshold in 2014, and are now at levels not experienced by the atmosphere in several million years.
Researchers from NOAA and the University of Colorado Boulder have devised a breakthrough method for estimating national emissions of carbon dioxide from fossil fuels using ambient air samples and a well-known isotope of carbon that scientists have relied on for decades to date archaeological sites.
NOAA’s Annual Greenhouse Gas Index tracks the concentrations of greenhouse gases being added to the atmosphere principally from human-caused emissions. The AGGI then calculates the heat being added to Earth's atmosphere and oceans as a result.