Stay Connected

NOAA Research News

Walter Schalk
SuperUser Account
/ Categories: Profile, Weather

Walter Schalk

Protecting National Security through Meteorology

by Sarah Fesenmyer (NOAA Research Communications)

Walt Schalk has spent his career as a meteorologist protecting national security. He has modeled the atmospheric spread of clouds of radioactive material from nuclear accidents, planned for the long-term storage of nuclear waste, and participated in atmospheric field experiments that increase the ability of the United States to monitor the testing of weapons around the world.

A NOAA weather tower

A NOAA weather tower

Schalk’s NOAA team provides a meteorological support program to the Nevada National Security Site. (Credit: Schalk)

Schalk started out as a traditional weather enthusiast and meteorologist. He grew up in the Chicago suburbs and always loved thunderstorms, fascinated by how one minute the weather was perfect, and ten minutes later you were running for your basement. Schalk was particularly interested in the lightning strikes that frequently hit power poles near his house.

In high school, he joined a meteorology club and made weather observations on the roof of the school twice a day. Schalk also had his own weather station at home. He called in his observations every night to WGN-TV, a local TV station, sometimes receiving an on-the-air mention, “and Walt Schalk reported a low of 13°F out in Elmhurst …” Schalk pursued a meteorology degree at Northern Illinois University and then went on to graduate studies at Florida State University, based on his interest in hurricanes.

Mount Pinatubo Eruption

Mount Pinatubo Eruption

View of Mount Pinatubo on June 12, 1991, from Clark Air Base in the Philippines. Schalk and colleagues predicted the spread of ash clouds to aid in aircraft evacuation routes. (Credit: NOAA/NGDC, R.S. Culbreth, U.S. Air Force)

Then his career as a meteorologist launched in a different direction. Just out of graduate school, Schalk got a job working for the U.S. Department of Energy’s Lawrence Livermore National Laboratory, responding to toxic chemical and radiological incidents around the world, such as nuclear power plant accidents. His group calculated the spread of plumes of hazardous materials in the atmosphere.

In 1991 Mount Pinatubo in the Philippines erupted in the second-largest volcanic event of the 20th century, spewing a massive cloud of volcanic ash over hundreds of miles. The U.S. Air Force’s Clark Air Base lay at the foot of the mountain. To aid in the immediate evacuation of thousands of Americans from the base, the Air Force called on Schalk’s team at Lawrence Livermore to predict the exact location and concentrations of the ash plumes coming from the volcano. The Air Force used this real-time modeling of the plumes to plan precise aircraft evacuation routes, allowing Air Force pilots to avoid concentrations of ash high enough to damage jet engines and cause engine failure. Schalk took satisfaction in providing crucial information for the safety of U.S. Air Force personnel, their families, and local residents at this dramatic moment.

Schalk is now Director of the Special Operations and Research Division (SORD) of NOAA’s Air Resources Laboratory, where he has worked for the past 17 years. His team provides a meteorological support program to the Nevada National Security Site, a remote piece of land the size of Rhode Island where the U.S. Department of Energy (DOE) conducts high-hazard operations, testing, and training. SORD supports national defense missions by providing meteorological information, such as fine-scale weather forecasts for field experiments, as well as model predictions for the spread of hazardous materials through the air in the event of an accidental spill.

Nevada National Security Site

Nevada National Security Site

Subsidence craters from past underground testing dot the landscape at the Nevada National Security Site. (Photo courtesy of National Nuclear Security Administration/Nevada Site Office)

“One of the major jobs of SORD is to provide precise weather forecasts for the safe execution of DOE experiments,” explains Schalk. “For example, there should be no chance of lightning during experiments that use explosives.”

The Nevada National Security Site is a vast, empty desert ranging from dry lakes to mesas to low mountains. Moon-like craters dot the landscape from past nuclear test explosions, but they are all several decades old. The U.S. has maintained a moratorium on explosive nuclear weapons testing since 1992. Schalk says that one project for which SORD supports DOE work is nonproliferation experiments. DOE simulates explosions at the Nevada National Security Site to help the United States know what to look for when using remote sensing to monitor the nonproliferation of nuclear weapons programs around the world. During an experiment, Schalk’s team launches balloons with instruments that detect wind speed and other atmospheric data; DOE feeds this data into their remote sensing models.

“I am proud to help make our nation safer,” says Schalk of his work for NOAA. Although not the career path he originally expected, Schalk loves his job and feels a strong sense of purpose every day. He enjoys applying his skills in modeling atmospheric dispersion and in weather forecasting to a continual series of different challenges and contexts. “There is always a new little twist,” says Schalk. “This work is never boring.”




Popular Research News

Rise of carbon dioxide unabated

Rise of carbon dioxide unabated Read more

Atmospheric carbon dioxide measured at Mauna Loa Observatory reached a seasonal peak of 417.1 parts per million for 2020 in May, the highest monthly reading ever recorded. Monthly CO2 values at Mauna Loa first breached the 400 ppm threshold in 2014, and are now at levels not experienced by the atmosphere in several million years.

NOAA exploring impact of COVID-19 response on the environment

NOAA exploring impact of COVID-19 response on the environment Read more

NOAA has launched a wide-ranging research effort to investigate the impact of reduced vehicle traffic, air travel, shipping, manufacturing and other activities on Earth’s atmosphere and oceans due to the response to COVID-19.

Dangerous humid heat extremes occurring decades before expected

Dangerous humid heat extremes occurring decades before expected Read more

Climate models project that combinations of heat and humidity could reach deadly thresholds for anyone spending several hours outdoors by the end of the 21st century. However, new NOAA-supported research says these extremes are already happening — decades before anticipated — due to global warming to date.  

Warming influence of greenhouse gases continues to rise, NOAA finds

Warming influence of greenhouse gases continues to rise, NOAA finds Read more

NOAA’s Annual Greenhouse Gas Index tracks the concentrations of greenhouse gases being added to the atmosphere principally from human-caused emissions. The AGGI then calculates the heat being added to Earth's atmosphere and oceans as a result. 

NOAA teams with United Nations to create locust-tracking application

NOAA teams with United Nations to create locust-tracking application Read more

NOAA’s powerful air quality model used to track pollution from wildfires, volcanoes and industrial accidents is now being used to help warn communities across Africa and Asia of what have been called the worst locust swarms in a quarter century. 

«July 2020»


Phone: 301-713-2458
Address: 1315 East-West Highway Silver Spring, MD 20910

Stay Connected


Oceanic and Atmospheric Research (OAR) - or "NOAA Research" - provides the research foundation for understanding the complex systems that support our planet. Working in partnership with other organizational units of the NOAA, a bureau of the Department of Commerce, NOAA Research enables better forecasts, earlier warnings for natural disasters, and a greater understanding of the Earth. Our role is to provide unbiased science to better manage the environment, nationally, and globally.


Can't Find What You Need?
Send Feedback
Copyright 2018 by NOAA Terms Of Use Privacy Statement
Back To Top