Search

Stay Connected

NOAA Research News

How will climate change change El Niño and La Niña?
Theo Stein

How will climate change change El Niño and La Niña?

As human-caused climate change disrupts weather patterns around the world, one overarching question is the subject of increased scientific focus: how it will affect one of the world’s dominant weather-makers?

ENSO's impact on the United States

ENSO's impact on the United States

El Niño and La Niña typically influence weather patterns in the United States in very different ways. Credit: NOAA Climate.gov

The future of the El Niño Southern Oscillation, or ENSO, is the subject of a new book published by the American Geophysical Union. With 21 chapters written by 98 authors from 58 research institutions in 16 countries, the volume covers the latest theories, models, and observations, and explores the challenges of forecasting El Niño and La Niña. The book, “El Niño Southern Oscillation in a Changing Climate” was published online on November 2.

A giant weather-maker

ENSO is a cycle of warm El Niño and cool La Niña episodes that happen every few years in the tropical Pacific Ocean. It is the most dramatic year-to-year variation of the Earth’s climate system, affecting agriculture, public health, freshwater availability, power generation, and economic activity in the United States and around the globe.

“This is the first comprehensive examination of how ENSO, its dynamics and its impacts may change under the influence of rising greenhouse gas concentrations in the atmosphere,” said Michael McPhaden, Senior Scientist with NOAA’s Pacific Marine Environmental Laboratory in Seattle and co-editor of the new volume.  Two other co-editors are from Australia: Agus Santoso, a scientist with the University of New South Wales,  and Wenju Cai, a researcher with the Commonwealth Scientific and Industrial Research Organisation, also known as CSIRO.

Image

ENSO impacts around the globe

During El Niño, chances for drought increase across India, Indonesia and Australia and a large part of the Amazon, while the southern U.S. tends to see more precipitation. During La Niña, the pattern is effectively reversed, with wetter conditions for Indonesia, Australia and parts of the Amazon, and dry conditions in the southern tier of the U.S. In September, NOAA’s Climate Prediction Center announced that a La Niña had developed in the Pacific and was likely to last through the Northern Hemisphere winter. 

The new book, three years in the making, tracks the historical development of ideas about ENSO, explores underlying physical processes and reveals the latest science on how ENSO responds to external factors such as climate phenomena outside the tropical Pacific, volcanic eruptions, and anthropogenic greenhouse gas forcing.

Variability a challenge for forecasts

Antonietta Capotondi, a CIRES scientist working at NOAA's Physical Sciences Laboratory, said in recent decades, scientists have come to appreciate how significantly ENSO impacts can vary from event to event.

 "No two El Niños or La Niñas are perfectly alike," Capotondi said. "We've seen how diverse ENSO events can be. This diversity adds another degree of complexity for understanding how climate change will influence future ENSO events.”

So how are ENSO impacts likely to evolve in the coming decades?  

Image

“Extreme El Niño and La Niña events may increase in frequency from about one every 20 years to one every 10 years by the end of the 21st century under aggressive greenhouse gas emission scenarios,” McPhaden said. “The strongest events may also become even stronger than they are today.”

In a warming climate, rainfall extremes are projected to shift eastward along the equator in the Pacific Ocean during El Niño events and westward during extreme La Niña events. Less clear is the potential evolution of rainfall patterns in the mid-latitudes, but extremes may be more pronounced if strong El Niños and La Niñas increase in frequency and amplitude, he said.

Some ENSO impacts are already being amplified, such as the extensive coral bleaching and increases in tropical Pacific storm activity observed during the 2015-16 El Niño. ENSO is expected to impact tropical cyclone genesis in the future as it does today in the Atlantic, Pacific and Indian Oceans, but precisely how is still an open question.

To learn more about El Nino and La Nina, visit http://www.climate.gov/enso.

For more information, contact Theo Stein, NOAA Communications, at theo.stein@noaa.gov.

Previous Article Large, deep Antarctic ozone hole persisting into November 2020
Next Article After a busy summer, NOAA’s hurricane gliders are returning home
Print
4179

x

Popular Research News

Natural disaster plans may aid businesses’ pandemic response

Natural disaster plans may aid businesses’ pandemic response Read more

The social and economic impacts of COVID-19 have battered small- and medium-sized enterprises, putting millions of jobs in the U.S. at risk. And a year rife with natural disasters has not done the many already struggling businesses any favors.

How will climate change change El Niño and La Niña?

How will climate change change El Niño and La Niña? Read more

A new book published by the American Geophysical Union provides first detailed examination of how climate change may influence El Niño and La Niña.

Congress reauthorizes NOAA Sea Grant through 2025

Congress reauthorizes NOAA Sea Grant through 2025 Read more

The National Sea Grant College Act was reauthorized and amended by Congress and signed by President Donald J. Trump on December 18, 2020. The reauthorization, titled the “National Sea Grant College Program Amendments Act of 2020,” includes several updates to Sea Grant’s authorizing legislation. The Act serves as a guiding framework upon which Sea Grant operates and serves America’s coastal and Great Lakes communities.

NOAA Research's top 5 stories from 2020

NOAA Research's top 5 stories from 2020 Read more

From predicting smoke movement from massive wildfires, to investigating how marine life is responding to a quieter ocean, 2020 was a big year for NOAA science. As this unprecedented year draws to a close, we’re looking back at some of our biggest research endeavors in 2020. Here are 5 of our most-read stories from the last year.

After a busy summer, NOAA’s hurricane gliders are returning home

After a busy summer, NOAA’s hurricane gliders are returning home Read more

NOAA’s hurricane gliders are returning home after a successful journey during the 2020 hurricane season. These gliders were deployed off the coasts of Puerto Rico, Dominican Republic, the U.S. Virgin Islands, the Gulf of Mexico, and the eastern U.S. to collect data for scientists to use to improve the accuracy of hurricane forecast models. 

RSS
«January 2021»
SunMonTueWedThuFriSat
272829303112
3456789
10111213141516
17181920212223
24252627282930
31123456

OAR HEADQUARTERS

Phone: 301-713-2458
Address: 1315 East-West Highway Silver Spring, MD 20910

Stay Connected

ABOUT US

Oceanic and Atmospheric Research (OAR) - or "NOAA Research" - provides the research foundation for understanding the complex systems that support our planet. Working in partnership with other organizational units of the NOAA, a bureau of the Department of Commerce, NOAA Research enables better forecasts, earlier warnings for natural disasters, and a greater understanding of the Earth. Our role is to provide unbiased science to better manage the environment, nationally, and globally.

CONTACT US

Can't Find What You Need?
Send Feedback
Copyright 2018 by NOAA Terms Of Use Privacy Statement
Back To Top