Search

Stay Connected

NOAA Research News

NOAA's miniature aerosol instrument delivered to space
Theo Stein

NOAA's miniature aerosol instrument delivered to space

"POPS" will help monitor air quality in crew quarters

A miniaturized aerosol spectrometer developed by scientists in NOAA’s Chemical Sciences Laboratory reached new heights on Monday, October 5 when it was delivered by a cargo capsule to the International Space Station orbiting more than 250 miles above Earth’s surface. 

Image
A Northrop Grumman Antares rocket launches to the International Space Station on Oct. 2, 2020, from NASA's Wallops Flight Facility, Wallops Island, Virginia. The rocket is carrying a Cygnus spacecraft with 8,000 pounds of supplies and experiments, including a miniaturized NOAA aerosol spectrometer. Credit: NASA Wallops/Patrick Black
 

The device, the Portable Optical Particle Spectrometer, or POPS, will help monitor air quality in the main living area of the space station. 

Developed by NOAA physicist RuShan Gao, POPS uses an on-board laser to measure and count aerosol particles between 140 nanometers to 2.5 micrometers in diameter. A micrometer is 1/1000th of a millimeter. A nanometer is 1,000 times smaller than that. At six inches long and 1.3 pounds, POPS is about one tenth the size and one fifth the cost of comparable instruments.

The instrument was integrated into Aerosol Dynamics Inc’s Ambient Particle Monitor, and ferried to the space station along with four tons of science experiments, crew supplies and station hardware on the Cygnus resupply capsule carried on an Antares rocket launched from NASA’s Wallops Flight Facility on Wallops Island, Virginia.

In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. High concentrations of inhalable particles on the space station may be responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air reported to NASA.  POPS will participate in a flight experiment which will provide data on floating particulate matter in the air inside the space station. Samples will be returned to Earth for chemical and microscopic analyses and will provide the first look at aerosol composition in the spacecraft.

POPS’ small size and light weight have earned it another high-flying mission in 2021. The instrument will be incorporated as a science payload launched by the Arizona company World View, for a series of high-altitude, long-duration flights aboard the company’s “Stratollite” balloons for a uniquely detailed look at the composition of Earth’s stratosphere.

Image
NOAA’s Portable Optical Particle Spectrometer, or POPS, uses an on-board laser to measure tiny suspended particles that influence stratospheric chemistry and reflect incoming sunlight. The miniaturized instrument, designed by researchers in NOAA’s Chemical Sciences Laboratory in Boulder, Colorado, weighs 1.3 pounds and is about the size of a lunch box. Credit: NOAA Chemical Sciences Laboratory
 

Stratospheric particles, or aerosols, play a key role in moderating Earth’s climate system by scattering or reflecting sunlight as it nears the surface and by modifying the formation of clouds. The stratosphere also holds the Earth’s protective ozone layer, which absorbs ultraviolet radiation that can damage cellular structure, increase the risk of skin cancer and cataracts, and suppress the human immune system. Aerosols in the stratosphere act as surfaces for chemical reactions to occur, such as those that lead to depletion of the ozone layer.

The size range of particles that POPS can detect is particularly important for understanding the climate since they are both small enough to accumulate in the atmosphere instead of settling out, and large enough to efficiently reflect sunlight. The data will play a role in helping NOAA to understand baseline conditions in the stratosphere. 

For more information, contact Theo Stein, NOAA Communications, at theo.stein@noaa.gov.

Previous Article NOAA awards $48.7M to advance climate science, build community resilience
Next Article Sea Grant study finds ghost forests may contribute to climate change
Print
9655

x

Popular Research News

Despite pandemic shutdowns, carbon dioxide and methane surged in 2020

Despite pandemic shutdowns, carbon dioxide and methane surged in 2020 Read more

The global average carbon dioxide level in the atmosphere surged at the fifth-highest rate in NOAA's 63-year record during 2020. Preliminary estimates of the increase in methane levels indicate it may have been the largest annual jump on record.  

Carbon dioxide peaks near 420 parts per million at Mauna Loa observatory

Carbon dioxide peaks near 420 parts per million at Mauna Loa observatory Read more

In May, NOAA's measurements at the Mauna Loa observatory averaged 419.13 parts per million. Scientists at Scripps calculated a monthly average of 418.92 ppm.  It's the highest level since accurate measurements began 63 years ago.

NOAA index tracks how greenhouse gas pollution amplified global warming in 2020

NOAA index tracks how greenhouse gas pollution amplified global warming in 2020 Read more

The annual analysis of samples collected by NOAA’s Global Greenhouse Gas Reference Network provides an updated measure of the excess heat trapped in the atmosphere by greenhouse gas pollution.

5 ways NOAA scientists are answering big questions about climate change

5 ways NOAA scientists are answering big questions about climate change Read more

From warmer ocean temperatures to longer and more intense droughts and heat waves, climate change is affecting our entire planet. Scientists at NOAA have long worked to track, understand and predict how climate change is progressing and impacting ecosystems, communities and economies.

New study shows promise of forecasting meteotsunamis

New study shows promise of forecasting meteotsunamis Read more

On the afternoon of April 13, 2018, a large wave of water surged across Lake Michigan and flooded the shores of the picturesque beach town of Ludington, Michigan, damaging homes and boat docks, and flooding intake pipes. Thanks to a local citizen’s photos and other data, NOAA scientists reconstructed the event in models and determined this was the first ever documented meteotsunami in the Great Lakes caused by an atmospheric inertia-gravity wave.

RSS
«June 2021»
SunMonTueWedThuFriSat
303112345
6789101112
13141516171819
20212223242526
27282930123
45678910

OAR HEADQUARTERS

Phone: 301-713-2458
Address: 1315 East-West Highway Silver Spring, MD 20910

Stay Connected

ABOUT US

Oceanic and Atmospheric Research (OAR) - or "NOAA Research" - provides the research foundation for understanding the complex systems that support our planet. Working in partnership with other organizational units of the NOAA, a bureau of the Department of Commerce, NOAA Research enables better forecasts, earlier warnings for natural disasters, and a greater understanding of the Earth. Our role is to provide unbiased science to better manage the environment, nationally, and globally.

CONTACT US

Can't Find What You Need?
Send Feedback
Copyright 2018 by NOAA Terms Of Use Privacy Statement
Back To Top