Thursday, February 22, 2018
 
Drifting Buoys Track Water Currents in the Great Lakes Straits of Mackinac

Drifting Buoys Track Water Currents in the Great Lakes Straits of Mackinac

by Margaret Lansing, Great Lakes Environmental Research Laboratory

Great Lakes Map

Great Lakes Map

The Straits of Mackinac connect Lake Michigan and Lake Huron. Credit: NOAA
When you’re watching a river or the waves on a lake, do you ever wonder where that water goes? If you threw a rubber ducky into the water, where would it end up? Scientists are studying the movement of water in the Straits of Mackinac, which connect Lake Michigan and Lake Huron, to figure out how the water moves around. This water movement can affect ship traffic, how pollution spreads, and where aquatic animals go.

This summer, NOAA Great Lakes Environmental Research Laboratory (GLERL) and Cooperative Institute for Limnology and Ecosystems Research (CILER) scientists deployed three drifter buoys in the Straits of Mackinac, which experience water currents that are much faster than other areas of the Great Lakes. The buoys drift naturally with currents and transmit their locations periodically via satellite, allowing researchers to track and record their paths in Google Earth. These data will allow scientists to better understand short-term water movements through the Straits.

Drifter Buoy

Drifter Buoy

Captain Mike Taetsch deploys a drifter buoy in the Straits of Mackinac. Credit: NOAA

Over months and years, water travels from Lake Michigan to Lake Huron, flowing downhill towards the ocean. On shorter time scales, hours or days, however, the flow has been shown to switch back and forth between the lakes. These short-term water flows can move about 80,000 cubic meters of water per second (more than the volume of 32 Olympic swimming pools!). This can cause currents of up to 1 meter per second.

GLERL scientists measured currents in the Straits in the 1970s and again in the 1990s, but the present drifters are the first of their kind to be deployed in the area and should help define the sloshing conditions and currents throughout the Straits. A team led by GLERL's Dave Schwab and CILER's Eric Anderson will use the data from the drifters to build and refine a hydrodynamic computer model that links the two Great Lakes for the first time.

Eventually, researchers hope the model will improve the Great Lakes Operational Forecast System and simulate the exchange flow between the two lakes.

“We’re now able to expand our picture of the physical processes in the Straits, and much like the Straits of Gibraltar, the exchange flow between basins provides interesting and complex conditions that can have a dramatic impact on the surrounding environment” said Dr. Schwab.

Hydrodynamic Model

Hydrodynamic Model

Computer model grid of the Straits of Mackinac, as part of the Lake Michigan-Huron hydrodynamic model. Credit: NOAA


Reference:

Anderson E.J., Schwab D.J., 2012. Oscillating bi-directional exchange flow through the Straits of Mackinac and implications for contaminant transport, Journal of Physical Oceanography, (in review)

Previous Article Innovative Farmers Look to Climate Forecasts for an Edge
Next Article Bringing Back the Fish
Print
24288

Name:
Email:
Subject:
Message:
x

Most Popular In Depth

GFDL Internships Support NOAA, Community Diversity Efforts

GFDL Internships Support NOAA, Community Diversity Efforts Read more

This summer, NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL) hosted 10 interns, ranging from a high school senior to graduate students well on their way to their Ph.D. degrees. Each intern conducted research relevant to GFDL’s climate-science mission, and most presented their findings at GFDL and at their home institutions.

Small Mussels with Big Effects: Invasive Quagga Mussels Eat Away at...

Small Mussels with Big Effects: Invasive Quagga Mussels Eat Away at... Read more

Since hitching unsolicited rides in boat ballast water in the late 1980s, invasive quagga mussels (Dreissena rostriformis bugensis), which are native to Ukraine, have caused massive changes to the ecology of the Great Lakes.  These invasive mussels have also taken a toll on the Great Lakes recreational and commercial fisheries, which are valued at $4-7 million annually.

Texas Sea Grant researchers help beach visitors avoid the grip of rip...

Texas Sea Grant researchers help beach visitors avoid the grip of rip... Read more

Dr. Chris Houser was studying rip current development on a beach in Florida when he noticed something curious: many beachgoers were spreading their beach blankets on the sand directly in front of an active rip current and swimming in the rip channel.

Never Missing an Opportunity, Ship of Opportunity That Is, to Collect...

Never Missing an Opportunity, Ship of Opportunity That Is, to Collect... Read more

What’s the first thing that comes to mind when you hear the words carbon dioxide? Is it the ocean? In this day and age, it should be. The ocean absorbs about one fourth of the extra carbon dioxide in the air that is released through human activity, according to a researcher at Scripps Institution of Oceanography.

Clearing up a cloudy view of phytoplankton's role in the climate system

Clearing up a cloudy view of phytoplankton's role in the climate system Read more

Phytoplankton - tiny plant-like organisms drifting through the great, vast ocean - are barely visible to the naked eye, and some are visible only through a microscope. Yet, when they are thriving, it is possible to see them from as far away as space. Their location is marked by swirling patterns of bright blues and greens that give the ocean a slick, marbled appearance, like oil on water.


Research Videos

Oceanic & Atmospheric Research Headquarters

1315 East-West Highway | Silver Spring, MD 20910 | 301-713-2458