Thursday, October 19, 2017
 
North Dakota’s Bakken oil and gas field leaking 275,000 tons of methane per year

North Dakota’s Bakken oil and gas field leaking 275,000 tons of methane per year

The Bakken oil and gas field is leaking a lot of methane, but less than some satellites report, and less than the latest Environmental Protection Agency inventory for petroleum systems, according to the researchers’ calculations. That's the finding of the first field study measuring emissions of this potent greenhouse gas from the Bakken, which spans parts of North Dakota and Montana. The work was published today in the Journal of Geophysical Research: Atmospheres.

Researchers found that 275,000 tons of methane leak from the Bakken each year, similar to the emission rate found for another oil-producing region, Colorado’s Denver-Julesburg Basin.

Measuring methane emissions

Measuring methane emissions

NOAA and CIRES recent studies have quantified methane emission rates from these major U.S. oil and gas basins. Credit: NOAA/CIRES
“This study provides a key snapshot of Bakken methane emissions that will help answer the bigger questions: how much methane is the U.S. emitting, where is it coming from, and how is that changing over time?” said Jeff Peischl, the study’s lead author and a scientist from the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder working at NOAA. Co-authors include scientists from NOAA, the University of Michigan, Stanford University, and the University of California, Davis.

The 200,000 square-mile Bakken Shale formation is one of the country’s top oil-producing regions. At the time of the study in May 2014, the Bakken accounted for 12.5 percent of all crude oil produced in the United States. Only Texas surpasses North Dakota for oil production among states. 

Oil and gas fields

Oil and gas fields

This map shows the seven United States oil and gas fields where NOAA and CIRES researchers have measured methane emissions as part of a continuing effort to understand methane emissions from major sources in the U.S. and across the globe. Credit: NOAA
Methane is the primary component of natural gas and the second-most common greenhouse gas emitted by human activity in the U.S. Some methane is produced by natural sources such as wetlands, but livestock feedlots, landfills, coal mines, and oil and gas production also add significant amounts of methane to the atmosphere. Pound for pound, methane is significantly more efficient than carbon dioxide at trapping heat in the atmosphere over a 100-year period. Eventually, atmospheric methane reacts to form to carbon dioxide, the most common greenhouse gas, which persists in the atmosphere for thousands of years.

In this study, researchers flew an instrumented NOAA Twin Otter aircraft upwind and downwind of production facilities in the Bakken, and calculated the region’s total methane emissions using a technique called mass balance. The researchers evaluated the chemical composition of the air samples to determine if the methane captured during the flights came from oil and gas operations or other activities, such as livestock feedlots. The majority came from oil and gas, they found.

This study is one of several that are part of an ongoing effort to understand the atmospheric impact of oil and gas drilling across the United States, an effort that has revealed major differences in emission rates among regions and types of oil and gas basins.

Measuring methane

Measuring methane

NOAA and CIRES researchers used NOAA's Twin Otter aircraft equipped with instruments to measure methane gas emissions over the Bakken oil and gas fields of North Dakota. Credit: NOAA
The Bakken’s 2014 methane emission rate of 275,000 tons per year is significantly less than estimates generated by satellites for the region between 2006 and 2011. The researchers also compared the measured emission rate for the Bakken to EPA’s 2013 national inventory, the latest year available when the paper was submitted.  EPA only reports total national greenhouse gas emissions from petroleum systems, so researchers calculated the Bakken’s share of the EPA inventoried emissions based on the Bakken’s oil production level.

The EPA, in its 2014 greenhouse gas inventory released last month, increased its estimate of methane emissions from petroleum systems by 2.5 times. The data reported today shows emissions from the Bakken are slightly lower than the EPA inventory, scaled to production. Field studies like this one, the researchers say, are vital for improving the accuracy of inventory estimates and satellite-based remote sensing measurements.

Another recent study showed the Bakken leaks ethane, also a component of natural gas, at a rate of about 250,000 tons per year, enough to be detected by atmospheric monitors in Europe. 

“Policymakers need good data to make good decisions,” said Tom Ryerson, study co-author and NOAA scientist. “As we transition from coal to natural gas and other sources of energy, it’s important that we understand the climate impacts of the fuel choices we’re making.”

This study is part of a continuing NOAA effort to understand methane emissions from all the major sources in the U.S. and across the globe.  This larger effort involves tracking the natural emissions from tropical wetlands and sources in the Arctic, as well as human-caused emissions from landfills, agriculture and animal husbandry, and energy production and use.

For more information, please contact Theo Stein, NOAA Communications at NOAA's Earth System Research Laboratory, at 303-497-6288 or by email at theo.stein@noaa.gov

 

 

Previous Article Leftover warm water in Pacific Ocean fueled massive El Niño
Next Article Warming due to carbon dioxide jumped by half in 25 years
Print
16741 Rate this article:
No rating

Name:
Email:
Subject:
Message:
x